Mth221 Week 3

Related Essays

Mth221 Week 6
the closest Mean Birth Weight to 4.07 pounds, which belongs to 28 to 31 weeks gestation period. Question 2 (a) 99.88% I used the NORMDIST(5.5,1.88,1.19
National Tv Turn-Off Week: a Dumb Idea
don't have is something to worry about. So, along comes Linda Weltner and National T.V-Turnoff Week. Problem solved. The middle class now has something to worry
National Tv Turnoff Week
a tree? How many people know that it even exist? National TV-Turnoff week does not miraculously change lifestyles. Regular viewers go back to their habit and go on
Planning a 12 Week Scheme Of Work
of work. Introduction This assignment has been designed to plan and produce a twelve week scheme of work in association with Unit 1: BTEC ND e-Media Production

Submitted by to the category Science and Technology on 04/22/2013 10:37 AM

11 Feb 13

MTH/221

Ray Crum

Chapter 7 Exercises:

7.1.5a) For each of the following relations, determine whether the relation is reflexive, symmetric, antisymmetric, or transitive.

R ⊆ Z+ x Z+ where a R b if a|b (read “a divides b,” as defined in Section 4.3)

The relation is reflexive, antisymmetric, and transitive

7.1.6) Which relations in Exercise 5 are partial orders? Which are equivalence relations?

The relation in part “a” is a partial order. The relations in “c” and “f” are equivalence relations.

7.2.2) If R is a reflexive relation on a set A, prove that R² is also reflexive on A.

Let x € A. R reflexive ===> (x, x) € R. (x, x) € R, (x, x) € R ===> (x, x) € R o R = R²

7.3.1) Draw the Hasse diagram for the poset (P(U), ⊆), where U = {1, 2, 3, 4}

Please see attached.

7.3.6a) For A = {a, b, c, d, e}, the Hasse diagram for the poset (A, R) is shown in Fig. 7.23.

determine the relation matrix for R.

(a) (b) (c) (d) (e)

(a) 1 1 1 1 1

(b) 0 1 0 1 1

M(R) = (c) 0 0 1 1 1

(d) 0 0 0 1 1

(e) 0 0 0 0 1

7.4.1a) Determine whether each of the following collections of sets is a partition for the given set A. If the collection is not a partition, explain why it fails to be.

A = {1, 2, 3, 4, 5, 6, 7, 8}; A1 = {4, 5, 6}, A2 = {1, 8}, A3 = {2, 3, 7}

The collection provides a partition of A

7.4.2a) Let A = {1, 2, 3, 4, 5, 6, 7, 8}. In how many ways can we partition A as A1 ∪ A2 ∪ A3 with

1, 2 ∈ A1, 3, 4 ∈ A2, and 5, 6, 7 ∈ A3?

There are 3 choices for placing 8 in A1, A2, or A3 so there are 3 partitions for A

Chapter 8 Exercises:

8.1.4) Annually, the 65 members of the maintenance staff sponsor a “Christmas in July” picnic for the 400 summer employees at their company. For these 65 people, 21 bring hot dogs, 35 bring fried chicken, 28 Bring salads, 32 bring desserts, 13 bring hot dogs and fried chicken, 10 bring hot dogs and salads, 9 bring hot dogs...

View Full Essay
Full Essay Stats...
  • Words: 790
  • Pages: 4
  • Views: 933

Join now to view this essay and thousands of others on PaperCamp.com. It's free Join Now!