Making Babies with an Iguana: the Secret to Making Dough with a Tornado

Submitted by: Submitted by

Views: 62

Words: 365

Pages: 2

Category: People

Date Submitted: 10/29/2014 06:35 AM

Report This Essay

Ultra-wideband (also known as UWB, ultra-wide band and ultraband) is a radio technology pioneered by Robert A. Scholtz and others which may be used at a very low energy level for short-range, high-bandwidth communications using a large portion of the radio spectrum.[1] UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.[2]

Similar to spread spectrum, UWB communications transmit in a manner which does not interfere with conventional narrowband and carrier wave used in the same frequency band.

Ultra-wideband is a technology for transmitting information spread over a large bandwidth (>500 MHz); this should, in theory and under the right circumstances, be able to share spectrum with other users. Regulatory settings by the Federal Communications Commission (FCC) in the United States intend to provide an efficient use of radio bandwidth while enabling high-data-rate personal area network (PAN) wireless connectivity; longer-range, low-data-rate applications; and radar and imaging systems.

Ultra wideband was formerly known as "pulse radio", but the FCC and the International Telecommunication Union Radiocommunication Sector (ITU-R) currently define UWB in terms of a transmission from an antenna for which the emitted signal bandwidth exceeds the lesser of 500 MHz or 20% of the center frequency. Thus, pulse-based systems—where each transmitted pulse occupies the UWB bandwidth (or an aggregate of at least 500 MHz of narrow-band carrier; for example, orthogonal frequency-division multiplexing (OFDM)—can gain access to the UWB spectrum under the rules. Pulse repetition rates may be either low or very high. Pulse-based UWB radars and imaging systems tend to use low repetition rates (typically in the range of 1 to 100 megapulses per second). On the other hand, communications systems favor high repetition rates (typically in the range of one to two...